Geolocation Prediction in Twitter Using Social Networks: A Critical Analysis and Review of Current Practice
نویسندگان
چکیده
Geolocated social media data provides a powerful source of information about place and regional human behavior. Because little social media data is geolocation-annotated, inference techniques serve an essential role for increasing the volume of annotated data. One major class of inference approaches has relied on the social network of Twitter, where the locations of a user’s friends serve as evidence for that user’s location. While many such inference techniques have been recently proposed, we actually know little about their relative performance, with the amount of ground truth data varying between 5% and 100% of the network, the size of the social network varying by four orders of magnitude, and little standardization in evaluation metrics. We conduct a systematic comparative analysis of nine state-of-the-art networkbased methods for performing geolocation inference at the global scale, controlling for the source of ground truth data, dataset size, and temporal recency in test data. Furthermore, we identify a comprehensive set of evaluation metrics that clarify performance differences. Our analysis identifies a large performance disparity between that reported in the literature and that seen in real-world conditions. To aid reproducibility and future comparison, all implementations have been released in an open source geoinference package.
منابع مشابه
A Simple Scalable Neural Networks based Model for Geolocation Prediction in Twitter
This paper describes a model that we submitted to W-NUT 2016 Shared task #1: Geolocation Prediction in Twitter. Our model classifies a tweet or a user to a city using a simple neural networks structure with fully-connected layers and average pooling processes. From the findings of previous geolocation prediction approaches, we integrated various user metadata along with message texts and traine...
متن کاملGeographic Dissection of the Twitter Network
Geography plays an important role in shaping societal interactions in the offline world. However, as more and more social interactions occur online via social networking sites like Twitter and Facebook, users can interact with others unconstrained by their geolocations, raising the question: does offline geography still matter in online social networks? In this paper, we attempt to address this...
متن کاملDesign and Test of the Real-time Text mining dashboard for Twitter
One of today's major research trends in the field of information systems is the discovery of implicit knowledge hidden in dataset that is currently being produced at high speed, large volumes and with a wide variety of formats. Data with such features is called big data. Extracting, processing, and visualizing the huge amount of data, today has become one of the concerns of data science scholar...
متن کاملA Model for Detecting of Persian Rumors based on the Analysis of Contextual Features in the Content of Social Networks
The rumor is a collective attempt to interpret a vague but attractive situation by using the power of words. Therefore, identifying the rumor language can be helpful in identifying it. The previous research has focused more on the contextual information to reply tweets and less on the content features of the original rumor to address the rumor detection problem. Most of the studies have been in...
متن کاملA Link Prediction Method Based on Learning Automata in Social Networks
Nowadays, online social networks are considered as one of the most important emerging phenomena of human societies. In these networks, prediction of link by relying on the knowledge existing of the interaction between network actors provides an estimation of the probability of creation of a new relationship in future. A wide range of applications can be found for link prediction such as electro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015